6 resultados para pyruvate dehydrogenase complex

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine (DCVC) resulted in a >1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygen-limited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used two-dimensional difference gel electrophoresis to determine early changes in the stress-response pathways that precede focal adhesion disorganization linked to the onset of apoptosis of renal epithelial cells. Treatment of LLC-PK1 cells with the model nephrotoxicant 1,2-(dichlorovinyl)-L-cysteine ( DCVC) resulted in a > 1.5-fold up- and down-regulation of 14 and 9 proteins, respectively, preceding the onset of apoptosis. Proteins included those involved in metabolism, i.e. aconitase and pyruvate dehydrogenase, and those related to stress responses and cytoskeletal reorganization, i.e. cofilin, Hsp27, and alpha-b-crystallin. The most prominent changes were found for Hsp27, which was related to a pI shift in association with an altered phosphorylation status of serine residue 82. Although both p38 and JNK were activated by DCVC, only inhibition of p38 with SB203580 reduced Hsp27 phosphorylation, which was associated with accelerated reorganization of focal adhesions, cell detachment, and apoptosis. In contrast, inhibition of JNK with SP600125 maintained cell adhesion as well as protection against apoptosis. Active JNK co-localized at focal adhesions after DCVC treatment in a FAK-dependent manner. Inhibition of active JNK localization at focal adhesions did not prevent DCVC-induced phosphorylation of Hsp27. Overexpression of a phosphorylation-defective mutant Hsp27 acted as a dominant negative and accelerated the DCVC-induced changes in the focal adhesions as well as the onset of apoptosis. Our data fit a model whereby early p38 activation results in a rapid phosphorylation of Hsp27, a requirement for proper maintenance of cell adhesion, thus suppressing renal epithelial cell apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Short-chain fructooligosaccharides (scFOS) and other prebiotics are used to selectively stimulate the growth and activity of lactobacilli and bifidobacteria in the colon. However, there is little information on the mechanisms whereby prebiotics exert their specific effects upon such microorganisms. To study the genomic basis of scFOS metabolism in Lactobacillus plantarum WCFS1, two-color microarrays were used to screen for differentially expressed genes when grown on scFOS compared to glucose (control). A significant up-regulation (8- to 60-fold) was observed with a set of only five genes located in a single locus and predicted to encode a sucrose phosphoenolpyruvate transport system (PTS), a beta-fructofuranosidase, a fructokinase, an alpha-glucosidase, and a sucrose operon repressor. Several other genes were slightly overexpressed, including pyruvate dehydrogenase. For the latter, no detectable activity in L. plantarum under various growth conditions has been previously reported. A mannose-PTS likely to encode glucose uptake was 50-fold down-regulated as well as, to a lower extent, other PTSs. Chemical analysis of the different moieties of scFOS that were depleted in the growth medium revealed that the trisaccharide 1-kestose present in scFOS was preferentially utilized, in comparison with the tetrasaccharide nystose and the pentasaccharide fructofuranosylnystose. The main end products of scFOS fermentation were lactate and acetate. This is the first example in lactobacilli of the association of a sucrose PTS and a beta-fructofuranosidase that could be used for scFOS degradation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alanine dehydrogenase (AldA) is the principal enzyme with which pea bacteroids synthesize alanine de novo. In free-living culture, AMA activity is induced by carboxylic acids (succinate, malate, and pyruvate), although the best inducer is alanine. Measurement of the intracellular concentration of alanine showed that AldA contributes to net alanine synthesis in laboratory cultures. Divergently transcribed from aldA is an AsnC type regulator, aldR. Mutation of aldR prevents induction of AldA activity. Plasmid-borne gusA fusions showed that aldR is required for transcription of both aldA and aldR; hence, AldR is autoregulatory. However, plasmid fusions containing the aldA-aldR intergenic region could apparently titrate out AldR, sometimes resulting in a complete loss of AldA enzyme activity. Therefore, integrated aldR::gusA and aldA::gusA fusions, as well as Northern blotting, were used to confirm the induction of aldA activity. Both aldA and aldR were expressed in the II/III interzone and zone III of pea nodules. Overexpression of aldA in bacteroids did not alter the ability of pea plants to fix nitrogen, as measured by acetylene reduction, but caused a large reduction in the size and dry weight of plants. This suggests that overexpression of aldA impairs the ability of bacteroids to donate fixed nitrogen that the plant can productively assimilate. We propose that the role of AldA may be to balance the alanine level for optimal functioning of bacteroid metabolism rather than to synthesize alanine as the sole product of N-2 reduction.